International Journal of Aquaculture Research and Development

International Journal of Aquaculture Research and Development

International Journal of Aquaculture Research and Development

Current Issue Volume No: 1 Issue No: 2

Research Article Open Access Available online freely Peer Reviewed Citation

Effects of the Level and Frequency of Fertilization with hen Droppings on Zooplanktonic Density and Growth Performance of Common Carp Post-Larvae (CyprinusCarpio)

1Aquaculture and fishing laboratory, Agricultural Research Institute for Development (IRAD), Specialized Station of Foumban-Cameroon

2University of Dschang, Department of Animal Science, Laboratory of Ichthyology and Applied Hydrobiology

Abstract

Zooplankton production and growth performance of post-larvae of common carp according to the level and frequency of fertilization with chicken droppings were studied between May and October 2017 at the IRAD pisciculture station in Foumban. To this end, two doses of hen droppings, namely 450 g/m3 (D450) and 600 g/m3 (D600), were each applied at two application frequencies (weekly (F2) and bimonthly (F1)). Thus, 1200 post-carp larvae were distributed in 12 identical concrete tanks (1.2m x 0.75m x 1m) each filled with 400 liters of water. The 2 doses applied at 2 frequencies were applied randomly in the 12 tanks in a complete random device comprising 3 treatments and 2 repetitions. Six days after fertilization, each tank was sown with zooplankton at a density of 7 individuals per liter (ind/l). The loading was carried out 12 days after fertilization at a density of 100 ind/m2. The results show that regardless of the dose and the frequency of droppings applied, the production of zooplankton was optimal 10 to 12 days after fertilization. Considering the growth performance, the tanks receiving the 600 g/m3 dose every 2 weeks presented the highest significant values ​​(p <0.05). On the other hand, the survival rate (36% on average) was not significantly influenced (p˃0.05) by the dose and the frequency of fertilization. The 600 g/m3 dose applied every two weeks can be recommended for the rearing of post-larvae common carp.

Author Contributions
Received 15 Jul 2020; Accepted 18 Jul 2020; Published 22 Jul 2020;

Academic Editor: Eman Hashem Radwan, Damanhour University, Egypt.

Checked for plagiarism: Yes

Review by: Single-blind

Copyright ©  2020 Djikengoue Kameni Patricia Linda, et al.

License
Creative Commons License     This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Competing interests

The authors have declared that no competing interests exist.

Citation:

Djikengoue Kameni Patricia Linda, Mambe Tameghe Flora, Kpoumie Nsangou Amidou, Tonfack Achile Peguy (2020) Effects of the Level and Frequency of Fertilization with hen Droppings on Zooplanktonic Density and Growth Performance of Common Carp Post-Larvae (CyprinusCarpio). International Journal of Aquaculture Research and Development - 1(2):13-21. https://doi.org/10.14302/issn.2691-6622.ijar-20-3490

Download as RIS, BibTeX, Text (Include abstract )

DOI 10.14302/issn.2691-6622.ijar-20-3490

Introduction

In Africa, nutritional deficiencies in proteins of animal origin are sources of metabolic diseases and from which a large part of its population suffers 1, 2. Of all the sources of protein, fish represents a reserve of 16.6% in animal proteins and 6.5% of the total proteins consumed in the world 3. In Sub-Saharan Africa and more specifically in Cameroon, 46% of the 20g of animal protein consumed per day per inhabitant is covered by fish. Most of this fish comes from fisheries and imports and only 1% from aquaculture 4. However, the decline in peach stocks in recent years due to the overfishing, destruction of wetlands and climate change are render aquaculture the only alternative to fight the unsatisfied fish needs of the populations 5, 6. Now this sector has faced five major constraints for 50 years, the main one being the lack of quality fry 7. This scarcity of fry is linked to the low larval survival rates in hatcheries, which would be due to several reasons, the main one being the lack of control over the qualitative and quantitative production of adapted live prey such as zooplankton 8. To this end, several studies like those of 9, 10 have shown that the use of agricultural waste and mainly chicken droppings allows better production of these zooplankton. The work of 10 and 11 suggest 600 g/m3 of chicken droppings as the best level of fertilization with a peak production obtained 10 to 12 days after fertilization. According to these authors, the evolution of the density of zooplankton indicates a sudden drop in the density of these organisms just after the peak of production. Thus, the real challenges lie in the constant maintenance of this production in order to ensure optimal growth of the post-larvae. However, to our knowledge, very few studies are available on the frequency of fertilization and its impact on post-larval growth. The general objective of this work is to contribute to better knowledge of the production of quality fry through better control of zooplankton production factors. More specifically, the aim was to assess the effect of the level and frequency of fertilization with chicken droppings on the density of zooplankton, on the survival and growth performance of common carp post-larvae (Cyprinus carpio) in concrete tanks.

Material and Methods

Study Area

The study took place from March to May 2018 at the IRAD pisciculture Station at Foumban, more precisely at the Koupa-matapit fish farm (5º21 'to 5°58' LN: 10º17 'to 11º02' to 10°48.82‘ LE) and an altitude of 1147m in the Western Region of Cameroon. The climate is of the Sudano-Guinean-type and includes a rainy season (March-October) and a Dry season (November-February). The average values ​​of the temperature and the rainfall recorded annually respectively are 22°C and 1800 mm 12.

Preparation of Concrete Tanks and Fertilizer

The test was carried out in 12 identical concrete tanks, 1.2 m long, 0.75 m wide and 1 m high each. These tanks were covered with plastic material in order to keep the temperature of the ambient environment constant. Two weeks before the start of the test, the tanks were washed and disinfected with bleach and then left to dry for 3 days. In addition, each tank received three days after draining a volume of 400 liters of drilling water and 21 grams of quicklime.

The droppings of laying hens (analyzed composition: 19.24% of crude cellulose; 0.87% of nitrogen and 0.61% of phosphorus) were used.

Biological Material

A concentrated sample of zooplankton was collected between 6 and 7 a.m in a Tilapia pond at the Station using a 40 µm mesh trawl pulled from one side of the pond to the other. This zooplankton sample was homogeneously distributed in 13 test tubes of 25 ml each. 1200 post-larvae of Cyprinus carpio were caught in the nursery tanks of the Koupa-Matapit Station just after absorption of the yolk sac. These post-larvae came from a semi-artificial reproduction according to the model described by 12.

Conduct of the Test

One week after liming, each of the tanks was fertilized randomly and in three repetitions at one of the following doses of droppings: D450-F1 (fertilization at 450 g/m3 applied every 2 two weeks), D450-F2 (fertilization at 450 g/m3 at weekly frequency), D600-F1 (fertilization at 600 g/m3 at biweekly frequency) and D600-F2 (fertilization 450 g/m3 weekly). Three days after this fertilization the tanks were sown with phytoplankton (food of the future zooplankton). For this purpose, 100 liters of water from a tilapia storage pond were withdrawn, filtered to 50µm of meshes in order to let only the phytoplankton pass, then added in each tank. Three days later, a sample of zooplankton was collected between 6 and 7 a.m in a Tilapia pond from the same Station. As described above, this zooplankton sample was concentrated and distributed homogeneously in 13 test tubes of 25 ml each. The 12 tanks received each the contents of one tube. The content of the 13th tube was fixed with 5% formalin and then immediately sent to the IRAD aquaculture laboratory at Foumban for a qualitative and quantitative inventory of the zooplankton under the MOTIC type optical microscope at the 10X objective 9. It emerged that the zooplankton was inseminated in the tanks at a density of 7 ind/l (that is 1; 2 and 4 ind/l of rotifers, cladocerans and copepods, respectively). 12 days after fertilization, each 1 m2 concrete tank received 100 Cyprinus carpio post larvae aging 5 days.

Data Collection

Zooplankton production was assessed every three days during the 30 days of the trial following the protocol described by several authors 10, 11. For this, every three days, between 6 and 8 a.m., 20 liters of water were withdrawn from each tank using a one-liter container (therefore 15 sampling points on the edges and 05 points in the middle of the tank). This water was filtered through a 50µm zooplankton screen to retain the zooplankton which was then stored in a 25 ml test tube then fixed with 5% formalin and sent to the IRAD aquaculture laboratory at Foumban for observation according to the protocol described by 11. To follow the evolution of the zootechnical performances of common carp larvae, for 30 days, control fisheries were carried out every two weeks, within at least 10% of the individuals in each tank were sampled and the lengths (total and standard) were measured using a millimeter ichtyometer. The weight was measured using a 0.05g precision electric balance.

The physico-chemical characteristics of the water were measured at the start of the test and then weekly between 6 and 8 a.m such as the pH, the dissolved oxygen, the temperature, the conductivity, the transparency and the depth of the water have been relieved in situ. On the same dates, a water sample was collected for the determination of nutrient salts, namely: nitrates, nitrites, ammoniacal nitrogen and phosphates. All these physico-chemical characteristics are within the acceptable range for zooplanktonic production the best growth of Cyprinuscarpio.

Studied Parameters

At the end of trial, the live weight, the total and standard lengths as well as the number of zooplankton made it feasible to evaluate the following growth characteristics:



Zooplankton density (D): With: n = number of individuals counted; v1 = volume of the subsample taken; v2 = volume of the concentrated sample; v3 = total volume of filtered water); Weight gain (WG) = final weight - initial weight; Average daily gain (ADG) = (final weight - initial weight) / (time (day)); Specific growth rate (SGR) = ((ln final weight - ln initial weight)*100) / (day time); Condition factor K = 100*(Weight / (Total length)3) and Survival rate = (Number of initial fish - final number of fish)*100 / (Number of initial fish);

Statistical Analyzes

The data were submitted to the one-way analysis of variance (ANOVA 1). When the effect of the dose associated with frequency was significant, the Duncan test was used to separate the means clustering at 5% threshold. The regressions tests were done using Excel 2007. All analyzes were Performed using the SPSS software version 21.0.

Results

Effect of the Level and Frequency of Fertilization with hen Droppings on the Evolution of zooplankton Groups

The evolution over time of the average density of zooplankton according to the dose of chicken droppings and the frequency of fertilization in carp nursery tanks is illustrated in Figure 1. It shows that independently of the dose of droppings and the frequency of fertilization the evolution of the density of zooplankton follows the same profile, trend and pace. Thus, we observe rapid growth from the insemination of zooplankton between day 6 and day 12, followed by an abrupt drop of the density of zooplankton three days after fish stocking (15th day), then occurs a slow and regular growth phase.

Figure 1.Evolution of the average density (ind/l) of zooplankton according to the dose and the frequency of fertilization with hen droppings in nursery
 Evolution of the average density (ind/l) of zooplankton according to the dose and the frequency of fertilization with hen droppings in nursery

Effects of the Level and Frequency of Fertilization with Chicken Droppings on the Density of Zooplankton Production

The total density of the different groups of zooplankton is summarized in Table 1. It appears that with the exception of the copepods whose highest significant values ​​were obtained with the dose 600 g/m3 applied every 2 weeks, all the other groups presented the highest density values ​​with the dose 600 g/m3 applied each week

Table 1. Density of zooplankton groups as a function of the level of chicken droppings and the frequency of fertilization
Zooplanktonics groups Species Fertilization level and frequency
D450-F1 D450-F2 D600-F1 D600-F2
Rotifers B.calyciflorus 47.93 ± 2.99a 46.81 ± 7.17a 146.34 ± 1.33b 106.74 ± 0.20c
Keratella sp . 28.58 ± 4.39a 30.39 ± 3.29a 44.49 ± 1.20b 42.05 ± 0.15b
A. fissa 19.83 ± 1.93a 19.25 ± 1.99a 31.40 ± 1.32b 30.16 ± 0.25b
Total Rotifers 96.35 ± 8.19a 96.45 ± 9.19a 222.23 ± 1.19b 178.94 ± 0.20c
Cladocerans Daphnia sp . 236.25 ± 28.73a 406.3 ± 50.71b 282.00 ± 38.60c 239.8 ± 27.28a
Copepods Nauplius 5.33 ± 0.20a 4.64 ± 0.37a 9.09 ± 0.56b 12.04 ± 1.58b
Cyclops sp . 12.66 ± 1.20a 14.88 ± 0.68b 15.67 ± 1.71b 42.43 ± 0.60c
Total copepod 17.99 ± 1.15a 19.53 ± 1.01a 24.76 ± 2.16b 54.48 ± 1.63c
Total zooplankton 350.59 ± 30.4a 522.28 ± 54.8d 528, 99 ± 47.7b 473.22 ± 33.4c

a, b, c the means bearing identical letters for the same characteristic are not significantly (P> 0.05) different. F2: weekly fertilization; F1: fortnightly fertilization; D450; D600: tanks fertilized respectively at 450 and 600 g/l of hen droppings.

Effects of Level and Frequency of Fertilization with hen Droppings on the Growth and Survival Characteristics of Cyprinus Carpio Post-Larvae

The influence of the level and frequency of fertilization with hen droppings on the survival rate of Cyprinus carpio post-larvae is illustrated in Figure 2. It follows that the survival rate was not significantly influenced (p <0.05) by the level and frequency of fertilization.

Figure 2.Survival rate according to the level and frequency of fertilization with hen droppings
 Survival rate according to the level and frequency of fertilization with hen droppings

Effects of the Dose of Chicken Droppings and the Frequency of Fertilization on the Growth Parameters and Survival of the Cyprinus Carpio Post-Larvae

The influence of the dose of hen droppings and the frequency of fertilization on the growth and survival of the Cyprinus carpio post-larvae is presented in Table 2. It appears that the tanks having received 600 g/m3 each 2 weeks presented the highest significant values ​​of bodyweight, weight gain, average daily gain and condition factor K.

Table 2. Growth characteristics and survival of Cyprinus carpio post larvae according to the level of hen droppings and the frequency of fertilization
Growth characteristics Levels of hen droppings
  D450-F1 D450-F2 D600-F1 D600-F2
Body weight (mg) 510±18.8ab 537± 23.3b 620±23.8b 420±15.4a
Total length (mm) 33.30±4.66b 33.63±4.26b 36.20±4.41c 29.10±4.85a
Weight gain (mg) 399 ± 16.5b 360 ± 22b 431 ± 23b 180 ± 15a
ADG (mg / d) 27 ± 1.1b 24 ± 1.5b 29 ± 1.6b 12 ± 1.2a
K factor 0.99±0.43ab 1.17±0.65ab 1.24±0.51b 0.93± 0.42a
SGR (%) 10.85±1.83c 7.44± 2.36b 8.07± 2.50b 3,63± 2,18a

a, b, c the means bearing identical letters for the same characteristic are not significantly (P> 0.05) different. F2: weekly fertilization; F1: fortnightly fertilization; D450; D600: tanks fertilized respectively at 450 and 600 g/l of hen droppings. ADG: average daily gain; SGR: specific growth rate.

Correlations Between Growth Characteristics of Common Carp Post-Larvae and the Density of Groups of Zooplankton

It appears from Table 3 presenting the correlations between density of zooplankton groups and growth characteristics that the zooplankton density of the medium did not significantly influence the zootechnical characteristics of common carp post-larvae, except for copepods and cladocerans which were significantly negatively and very strongly correlated (P <0.01) with the specific growth rate of post-larvae from tanks receiving 450 g/m3 and 600 g/m3 every two months and which were significantly positively and strongly correlated (P <0.05) with the survival rate of the post-larvae from the fertilized tanks at 600 g/m3.

Table 3. Correlation between growth characteristics of common carp post larvae and density of zooplankton groups
Growth characteristics of post-larvae Treatments Zooplankton groups
Rotifers Copepods Cladocerans (Daphniasp.) Zooplankton
ADG D450 - F1 -0.329 0.577 0.539 0.164
D450 - F2 0.898 -0.994 0.354 0.864
D600 - F1 0.208 -0.972 -0.978 0.110
D600 - F2 -0.591 -0.832 -0.763 -0.692
K D450 - F1 -0.490 0.712 0.382 -0.012
D450 - F2 0.896 -0.994 0.359 0.861
D600 - F1 -0.901 -0.456 -0.029 -0.940
D600 - F2 -0.582 -0.838 -0.770 -0.683
SGR D450 - F1 0.958 -1.000 ** 0.366 0.703
D450 - F2 0.939 -1.000 ** 0.257 0.911
D600 - F1 0.436 -0.888 -0.999 * 0.345
D600 - F2 -0.576 -0.842 -0.775 -0.678
Survival   D450 - F1 -0.960 0.844 -0.815 -0.977
D450 - F2 0.650 -0.352 -0.817 0.704
D600 - F1 0.055 1.000 * 0.890 0.153
D600 - F2 -0.101 0.990 1.000 * 0.031

F2: weekly fertilization; F1: fortnightly fertilization; D450; D600: tanks fertilized respectively at 450 and 600 g/l of hen droppings. ** Significant correlation (P <0.01); * Significant correlation (P <0.05).

Discussion

Evolution of the Density of Zooplankton

During this test, the evolution of the zooplankton density showed rapid growth from the insemination of the zooplankton until the introduction of the fish post-larvae, which corresponds to the usual scheme described by 9 and 11. It then dropped rapidly from day 15 before stabilizing from day 21. The drop in zooplankton density on the 15th day would no doubt be due to the predation action exerted by the newly introduced post-larvae (at 12th day) on them.

Total Length

During this test, the total length (LT) values ​​ranged from 29.10 and 36.20 mm. These values ​​are comparable to the respective values ​​of 30 and 25 mm reported by 14 in Clariidae and 14 by in post-larvae of Cirrhiusmrigala (20 days old). They nevertheless remain well below the values ​​(44-50 mm) reported by 15 in post-larvae of Labeobarbusbatesii aged 45 days. The differences in this result would be explained not only by the species used but also by the more intermediate duration of the nursery which was 30 days in this test.

Bodyweight, Weight Gain and Average Daily Gain

The values ​​obtained during this work included between 420-620 mg; 180-431 mg and 12-29 mg/day respectively for bodyweight, weight gain and average daily gain were very low compared to those obtained after 45 days of nursery by 15 in the Labeobarbusbatesii post-larvae (675-1275 mg; 525-1126 mg and 12-26 mg/day respectively) feed on different types of food. The same observations were made by 16 in ornamental fish Puntusvittatus (370- 840 mg and 5 - 11.2 mg/day respectively for weight gain and average daily gain) after 75 days of nursery. These values ​​are also much lower than those reported by 17 in Cyprinus carpiofingerlings (7680- 13410 mg; 170-300 mg/day respectively for weight gain and average daily gain) after 45 days of breeding and by 19 in Osteochilusvittatusjuveniles of (13740-20690 mg and 2560-3110 mg/day) for the same parameters. The same is true for the work of 19 in the Aspikutum hybrid with respective values ​​of weight gain and average daily gain of 5190-8620 mg and 280- 460 mg/day. These differences could be explained by the species used, the duration of production and the stage of breeding.

Specific Growth Rate and Condition Factor K

The specific growth rate between 3.6 and 10.85% obtained during this work is high compared to that (1.4-2.04%) reported by 20 with the post-larvae of the keurelian fish Tor tamba, as well as that (3.33-4.72%) obtained by 15 in post-larvae of the African carp Labeobarbusbatesii. The same trend was observed by 21 in post-larvae of Pethiareval (1.3-1.49%). These differences are essentially linked to the genetic determinism of the species.The values ​​of the condition factor K comprised during this test between 0.92 and 1.24 were comparable to the values ​​(0.89-1.096) obtained by 22 in the wild milieu with Labeobarbusbatesii. This value remains relatively high compared to that (0.73-0.77) obtained with the Aspikutum hybrid by 19. This factor also remains very low compared to the values ​​of 0.87-3.14 obtained by 23 with Garraruffa. The low values ​​of K observed could be explained by the high density used in this test, which was 100 individuals/m2. In short, regardless of the level and frequency of fertilization, the fish showed good nutritional and health status since almost all K values ​​remained greater than 1 (K≥1).

Post-Larval Survival Rate

The values ​​of this parameter during the test varied significantly between 29.6 and 37%. This result is lower than that observed with Cirrhiusmrigala by 1, which reports survival rates varying from 30-50% during the first 20 days of nursery and 60-70% during the 2-3 months of pre -grossing in this species. However, it remains very low compared to those (79-92% and 78-93%) obtained with the fry ofPoecilia reticulata and Pethiareval, respectively by 24 and 21. This variation could be explained by the difference in development stage considered and therefore due to the fragility and difficulty of nutrition of the post-larva used in breeding.

Conclusion

At the end of this work on the effect of the level and frequency of fertilization with chicken droppings on the post-larval growth performance of Cyprinus carpio, we can conclude that both the level and the frequency of fertilization had a significant effect on the zooplanktonic density and the growth performance of the common carp post-larvae. Thus, the highest values ​​were obtained in the batches fertilized at 600 g/m3 at a fortnightly frequency followed by those fertilized at 450 g/m3 at the same frequency. Although the survival rate was not significantly influenced. Fertilization at 600 g/m3 is therefore recommendable every two weeks.

References

  1. 1.FAO. (2009) Situation mondiale de l’alimentation et de l’agriculture : point sur l’élevage. , FAO (Ed), Rome (Italie) 202, p..
  1. 2.Besson M, Aubin J, Komen H, Poelman M, Quillet E et al. (2016) Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations,J.cleanerproduct.,116:. 100-109.
  1. 3.FAO. (2014) The state of world fisheries and aquaculture.FAO.Rome,Italy,64p.
  1. 4.FAO. (2018) The state of the world fisheries and aquaculture 2018. Achieving the Sustainable Development Goals. , Rome. License:, CC BY-NC-SA 3, IGO..
  1. 5.Tacon A. (2004) Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic resources, culture and development. 1(1), 3-14.
  1. 6.Marra R. (2005) Teacher beliefs: the impact of the design of constructivist environments on instructor episthémologies. Learning Environments Research, with -. 155.
  1. 7.Moehl J, Brummett R E, Kalende B M, Coche A. (2006) Guiding principles for promoting aquaculture in Africa: benchmarks for sustainable development ”. CIFA Occasional Paper 28, Food & Agriculture Organization of the United Nations. , Accra Ghana
  1. 8.Awaïss A. (1992) Production possibilities and nutritional quality of the brackish water rotiferBrachionusplicatilis, OF Müller raised on defatted and micronized rice bran. , Rev. Hydrobiol.trop 25, 55-61.
  1. 9.Agadjihouède H, Bonou A C, Montchowui E, Laleye P. (2011) Research of the optimal dose of poultry droppings for the specific production of zooplankton for fish farming purposes. , Calavi. Cotonou. Benign. CahAgric 20(4), 60-247.
  1. 10.Agadjiouédé H, Bonou C A, Layé. (2011) Effect of fertilization based on poultry droppings on the production of zooplankton in aquariums. , Anls.SciArg 14(1), 63-75.
  1. 11.Tonfack A P, Efole E T, N A Kpoumie, Tsoupou K S, S Nana TA Njouokou et al. (2018) Effect of the level of fertilization with chicken droppings on the production of zooplankton in tanks concreted. Bulletin of animal health and production in Africa. 66(2), 385-395.
  1. 12.Pouomogne V.Pisciculture en milieux tropical Africain 1998: Comment produire du poisson à coût modéré. Coopération Française, Centre d’excellence pour la production, l’innovation et le développement. Presse universitaire d’Afrique.;. 236.
  1. 13.Cacot P.Contribution to the improvement of fry production in Cameroon: reproduction and nursery breeding trials withClariasgariepinusand two other species. CIRAD, France, mission order no.30.06.20620. 65.
  1. 14.WJAR Viveen, CJJ Richter, PGWJV Oordt, JAL Janssen, Huisman E A. (1985) Practical manual for fish farming of African catfish (Clariasgariepinus). , Department of Fish and Fisheries of the Agronomic University of Wageningen 91, p.
  1. 15.Tonfack A P, N A Kpoumie, Ngoula F, KPL Djikengoue, Tiogue T C et al. (2020) Survival rate and growth performances of post-larvae of the African CyprinidaeLabeobarbusbatesii(Boulenger. , International Journal of Fisheries and Aquatic Studies 8(3), 128-134.
  1. 16.Arathi A R, Jayaprakas V. (2014) Effect of dietary protein on the growth and reproductive performance of the indigenous ornamental fish,puntiusvittatus(day). , Journal of Aquatic Biology & Fisheries 2(1), 62-67.
  1. 17.Coroian C O, Miresan V, Cocan D I, Vâtu R D, Raducu C M et al. (2015) Growth performance of common carp (CyprinuscarpioL.) fingerlings fed with various protein levels. Aquarium, Conservation and Legislation. , International Journal of the bioflux society 6(8), 11.
  1. 18.Muhammad AS Niagara, Mia S, H. (2018) Influence of different protein levels and protein to energy ratios on growth, feed efficiency and survival of bonylip barb (OsteochilusvittatusCyprinidae) fingerlings. , Pakistan Journal of Nutrition 17(5), 228-235.
  1. 19.Haghparast P, Falahatkar B, Khoshkholgh M R, Meknatkhah B. (2016) Influence of dietary protein / lipid ratio on growth performance and body composition of Aspikutum, a new hybrid ofLeuciscusaspius♀. , Rutilusfrisii♂ (Teleostei: Cyprinidae). Iranian Journal of Ichthyology 3(4), 304-315.
  1. 20.Muchlisin Z A, Murda T, Yulvizar C, Dewiyanti I, Fadi N et al. (2017) performance and feed utilization of keureling fish Tor tamba (Cyprinidae) fed formulated diet supplemented with enhanced probiotic. F1000 Research 2017,: 137 (doi: 10, 12688 / f 1000 research.10693f) .
  1. 21.RMLW Rathnayake, RRAR Shirantha, GRH Rupuka, HMP Kithsiri, WAD Nayananjali. (2016) Evaluation of growth and breeding performances of Pethia reval (red fin barb), with different feed under aquarium condition. , International Journal of Scientific and Research Publications 10(6), 191-195.
  1. 22.Tiogué T C, ETM Tomedi, Nguenga D, Tchoumboué J. (2010) Characteristics of general morphology and growth of the African CyprinidaeLabeobarbusbatesiiin the Mbô flood plain. Cameroon. International journal of Biology and Chemestries sciences 4(6), 1988-2000.
  1. 23.Abedi M, Shiva A H, Mohammadi H, Malekpour R. (2010) Reproductive biology and age determination of Garra rufa Heckel, 1843 (Actinopterygii: Cyprinidae) in central Iran. , Turk. J. Zool 34, 1-7.
  1. 24.kHM Paliitha, Prakash S, ZSG Syeddian. (2010) Growth and reproductive performance of female guppy,Poeciliareticulata(Peters) fed diets with different nutrient levels. , Indian Journal of fisheries 57(1), 65-71.