Abstract
The current uncontrollable outbreak of novel coronavirus (COVID-19) has unleashed severe global consequences in all aspects of life and society, bringing the whole world to a complete halt and has modeled significant threats to the global economy. The COVID-19 infection manifests with flu-like symptoms such as cough, cold, and fever resulting in acute respiratory distress syndrome (ARDS), lung dysfunction, and other systemic complications in critical patients are creating panic across the globe. However, the licensed vaccine has started to show up; some resulted in side effects that would limit its possibility in some circumstances as allergic personnel, for example. Moreover, the production and approval of new drugs is a very complicated process and takes a long time. On the other hand, stem cells have gone the extra mile and intensively investigated at preclinical and clinical studies in various degenerative diseases, including infectious ones. Stem cells are proposed as a broad-spectrum therapeutic agent, which may suppress the exaggerated immune response and promote endogenous repair by enhancing COVID-19 infected lung microenvironment. Also, stem cells have different application manners, either direct transplantation, exosome transplantation, or drug delivery of specific cytokines or nanoparticles with antiviral property by engineering stem cells. This review discusses and summarizes the possible emerging role of cell-based therapy, especially stem cell therapy, as an alternative promising therapeutic option for the treatment and control of novel COVID-19 and its potential role in tissue rejuvenation after COVID-19 infection.
Author Contributions
Copyright© 2021
Elkhenany Hoda, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
The recent uncontrollable outbreak of novel coronavirus (COVID-19) infection is wreaking havoc in several countries. COVID-19 has first reported in Wuhan State of Hubei Province in China, is now a severe novel threat to public health with the emergence world over The COVID-19 disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), an aggressive strain and highly infectious pathogen that mainly targets the human upper respiratory system In the meantime, there is a superhero therapeutic compartment that has proven to be efficient in a wide range of degenerative diseases, which is stem cells. It also raised as an alternative therapeutic agent because till now; there is no logical explanation of why some patients are more drastically affected by COVID-19 infection. However, the majority would recover very fast. We do believe that endogenous stem cells may play a role in such different responses. Since COVID-19 infection is mainly detected in the upper and lower respiratory tracts but not in the spleen, bone marrow, lymph nodes, and heart. Patients with COVID-19 infection showed various significant clinicopathological changes in their lower respiratory tract, immune organs, and systemic blood vessels, emphasizing that viral infection may modulate and over-activate immune responses in the human body. However, immune modulation approaches might be potentially helpful to improve antiviral immunity and reduce the viral load, enhance outcomes and recovery of COVID-19 patients. In this regard, stem cell-based therapy is a novel emerging potential intervention that may help inhibit the overreaction of immune response and promote endogenous repair by enhancing the SARS-COV-2 infected lung microenvironment. This review discusses and summarizes the possible emerging role of stem cell therapy as an alternative therapeutic option for the treatment and control of novel COVID-19.
Results
Novel coronavirus (corona = crown-like spikes) small enveloped, positive-sense single-stranded RNA (+ssRNA) virus belongs to the family Coronaviridae. The virus is transmitted predominantly through direct close contact with an infected person; small respiratory droplets and aerosolization/fecal-oral route are also strongly possible. Infection is more contagious when patients are symptomatic, but it can also be transmitted with asymptomatic patients' close contact and before symptoms appear Patients with chronic diseases (diabetes, asthma, cardiovascular disease, kidney failure, obesity, malignancy, etc.) and older individuals have an increased risk of disease severity and fatality. Recent studies have identified human angiotensin-converting enzyme 2 (ACE2) as a crucial receptor for the SARS-CoV-2 and can enter the host cell's respiratory mucosa through the ACE2 receptor Initially, the majority of COVID-19 MSCs are naïve cells with no identity but can differentiate into more specialized cells such as cartilage and bone cells MSCs have proven to restore lung function in various viral affections shares the same symptoms with COVID-19. For instance, BMSCs have been demonstrated to efficiently promote rehabilitation, survival rates and mitigate the inflammatory response in animal models infected with influenza A H1N1, H5N1, and H9N2 avian influenza Similarly, stem cells strongly proposed to be involved in the treatment protocol strategy of COVID-19. They have a high potential to modulate the immune system (decrease the hyperimmune activity) and stimulate the damaged tissues' regenerative process, hence accelerating recovery. Moreover, Stem cells isolated from the umbilical cord, adipose tissue, and placenta have been proven resistant to SARS-Cov-2 infection as confirmed by low ACE2 expression Additionally, stem cells have been demonstrated to shed tiny fragments at a nano-size range named later as exosomes. These particles are composed of a phospholipid membrane, which envelops proteins, cytokines, and genetic messengers. The function of released exosomes is mainly to help stem cells to work remotely at peripheral sites in the body by delivering their regenerative cues. At the clinical application, exosomes are believed to be more advantageous as a therapeutic agent than stem cells. It will fulfill the demanded regenerative effect entirely similar to their parent cells. Moreover, exosomes provide hope for easy, safe, affordable, and off-the-shelf biological therapy Treatment of viral disease could be approached by either preventing the virus from entering the cells, restrict virus survival and replication in the hosting cells, and inhibit excessive host immune response Many studies consensus that stem cells harbor a potential antiviral effect against polyomavirus, influenza A, and cytomegalovirus Although stem cells can migrate to the site of injury in various organs upon intravenous (IV) transplantation, there is a piece of high evidence that stem cells got entrapped in the lung after IV transplantation Swartzendruber and his group showed that the pluripotent stem cells exhibit antiviral potential and suppress polyomavirus function counter to differentiated somatic cells, which were more susceptible to the infection UCMSCs have been demonstrated to restore the alveolar epithelial cells permeability and alveolar fluid clearance related to Influenza A (H5N1) virus infection in the rat animal model Similarly, EX-MSCs can provide a potential antiviral function. For instance, EX-UCMSCs have been demonstrated to suppress HCV replication in vitro It has demonstrated that the high fatality rate of COVID-19 hails from the acute hyper-immune response from the lung immune system (or hyperactivity of the lung immune system); this phenomenon is known as ARDS In 2015, two patients suffering from ARDS succumbed BMSCs transplantation. The treatment was very efficient in resolving the inflammation and suppressing T-cell responses, and induction of regulatory phenotypes in T cells, monocytes, and neutrophils Since the administration of IFN-α was influential in the treatment of COVID-19 patients and resulted in a high viral mRNA elimination rate EX-MSCs have shown the same anti-inflammatory and immunological response as their parent cells. For example, EX-ADSCs were reported to reduce IFN-γ, consequently inhibiting T cell activation and induced macrophage polarization Lung fibrosis is one of the most severe complications of COVID-19. Fibrosis results in tissue thickening (as confirmed by histopathological examination), which hinders gas exchange and hence lower blood oxygen tension in which patients manifest ARDS symptoms Intravenous injection of UC-MSCs and BMSCs have been shown to effectively ameliorate lung fibrosis in different animal models In order to enhance the alveolar epithelial cell regeneration, which eventually will impact pulmonary permeability dominance, Zhang et al. have proposed to engineer BMSCs to overexpress p130 or E2F4 ACE2 has been reported to prevent lung injury resulting from septicemia, acid inhalation, or endotoxin shock Applying this hypothesis based on the preclinical findings in Corona virus-infected patients may be tricky and not guaranteed. The reason lies in the possibility of ACE2-cells to get infected with CoV-19, similar to SARS-2003 Stem cells have a potential role in preventing cell death. For instance, BMSCs has shown a significant effect on Isoproterenol-induced lung injury (ISP-LI) as it reduced the caspase-3 activity and upregulated nuclear-related factor-2 (Nrf2, antioxidant marker) EX-ADSCs exhibit a protective effect on cardiomyocytes against reactive oxygen species (ROS), which has a drastic impact on cell viability MSCs also were reported to have a potent antioxidant effect. BMSCs reported reducing ROS production in HCL injured lung animal model through upregulation of antioxidant enzyme Hemeoxygenase-1 (HO-1) In terms of testing stem cells efficacy from various sources (including BMSCs, ADSCs, Decidual stromal cells, Menstrual blood stem cells, and HUCMSCs) as a therapeutic agent for ARDS, which is the primary symptom of COVID-19, there were about 11 clinical trials have been registered from 2013 to 2020. Some clinical trials has shown that stem cells are safe, tolerable, and effective in alleviating ARDS related symptoms as shown in UC-MSCs were used successfully to treat one COVID-19 positive female patient (65-years old) in which she received three doses; each one was 50*10 EX-MSCs have been previously tested for their potential to treat lung-related diseases as a chronic obstructive pulmonary disease (COPD) In terms of precautions that should be considered in stem cell therapy, there will be three aspects, the first aspect related to donors, the second related to cell therapy preparation, and the final one associated with patients (therapy recipients). Donors should be screened thoroughly. Selection of the donors should be subject to some considerations as the donor age and health status as they have proven to impact the stem cells quality and the derived exosomes. Cell therapy preparation: High precautions should be taken to prevent contaminations. Also, cells should go through many investigations to prove their viability, efficacy, and safety. Taken into consideration, the raised warnings from using an unproven stem cell therapy instead of properly tested ones are the physician's primary responsibility, as discussed by Recipients should be checked if they have a cancer history. Stem cell therapy may worsen cancer patients' health status as proved in vitro and in vivo studies Herein, we shed light on the possible therapeutic potential effect of stem cell therapy and its derivatives on COVID-19. We will also highlight the possibility of involving genetic engineering and nanotechnology to enhance stem cells' regenerative capacity and their derivatives ( As shown in recent studies and clinical trials that incorporated stem cell therapy in the treatment protocol of some viral infection cases and COVID-19, in particular, that stem cells have a high potential to modulate the immune response and regenerate tissues. Herein, we propose a couple of ways to enhance the stem cell's therapeutic efficiency and increasing its potential. That can be accomplished by either genetic engineering of stem cells or NPs engineering. MSCs genetic engineering can be achieved by either upregulation of specific genes (which are necessary for the regeneration process) or downregulation of other genes (which may be involved in the virus virulence) In addition, stem cells are proposed as an excellent mediator to deliver NPs with antiviral properties since they possess a high affinity to migrate into the lung. The nanotechnology field advances lead to inducing nanoparticles (NPs) modifications to accommodate the viral infection control strategy. For instance, some NPs as Rheum tanguticum, tannic acid-modified silver (TA-Ag), polyethylene glycol coated zinc oxide (ZnO-PEG), and Gold/Copper Sulfide (Au/CuS) have shown to be effective against Herpes simplex virus type 1 (HSV-1), HSV-2, influenza virus (H1N1), and Human norovirus respectively To get a closer idea about the effect of NPs on the currently pandemic SARS-2 infection, we will spot the light on a couple of NPs that have been modified and tested on viruses from the same family (Coronavirus). The antiviral activity of Qdots has been investigated on human coronavirus HCoV-229E in which Qdots cause inhibition of the virus at the entry stage and replication stage due to the capacity of the NPs to interact with the virus entry receptors As explained earlier, exosomes can supersede stem cells efficiently and beat on the raised issues against their use. Exosomes derived from the previously mentioned engineered MSCs can also enhance their regenerative capacity and increase the successful cure rate. Moreover, the possibility of being administered by inhalation can decrease the overload of hospitals. In conclusion, with the absence of specific and effective antiviral treatment against novel coronavirus, stem cells and their derivatives exosomes are our great hope and efficient promising tools as antiviral agents for treating COVID-19 patients. These emerging approaches might improve critically ill pneumonia patients' outcomes through anti-inflammatory, anti-immunomodulatory actions, and promoting tissue repair and recovery.
Trials
Methodology
Results
Ref
Allogeneic ADSCs (1*106 cell/kg)
12 ARDS
The treatment was safe and tolerable; but non-significant to the placebo group.
(104)
BMSCs(10*106 per kg)
9 ARDS
Resulted in significantly higher clinical output. The mortality rate was 22% (other reasons than treatment protocol).
(105)
UC-MSCs
9 ARDS
Reduced the inflammatory biomarkers and increased the immune T-cell markers (helper, cytotoxic, and regulatory T-cell)
(106)