Abstract
Underwater sounds from human sources can have detrimental effects upon aquatic animals, including fishes, and currently such sounds are very common. It is important to examine such anthropogenic sounds and their effects upon aquatic animals, so that it is possible to introduce protective regulations. Fishes and other aquatic animals can detect underwater sounds and use them to obtain key information about the environment around them. Sounds travel rapidly over great distances in water and can provide detailed information on the presence of prey, predators, and related fishes, while the overall acoustic scene provides the fishes with key information about their environment.
Although some of the background noise is generated by natural sources, including the precipitation of rain and snow, and wind and waves, many underwater sounds now come from anthropogenic sources, often termed noise . Some of these human-made sounds can kill or injure fishes and other aquatic animals, also impairing their hearing, and altering their behavior. There is a need for more work on the impact of human-made underwater noise upon the fitness of aquatic animals. This paper considers the gaps in information that must be resolved. The effects that need to be considered include death and injuries, physiological effects, and changes in behavior.
Author Contributions
Copyright© 2022
Donald Hawkins Anthony.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
There are current problems for all aquatic animals, including fishes. Many of them are now in a very poor state, and many fish stocks are close to collapse. Current concerns about these problems tend to focus on the effects of Climate Change; Chemical Pollution; Fishing; and other Human Activities Underwater Noise Pollution by humans is very common, but it is often ignored. The sea, rivers and lakes are not generally silent. Natural sounds are generated by: rain, snow, surface waves & turbulence. There are also natural substrate vibration sounds, caused by waves breaking on the shore. Many aquatic mammals, fishes, and invertebrates make sounds themselves. Vision, taste, and smell senses are relatively poor in the aquatic environment, and sound is therefore very important to aquatic animals. Nowadays, there are many anthropogenic (human-made) sound sources. The man-made sounds that are audible to fishes, and which potentially disturb or damage them or mask other relevant sounds, have been reviewed by Popper and Hawkins Underwater sound is made up of two elements, reviewed by Popper Underwater sounds are generally monitored by measuring the Sound Pressure, which is what most hydrophones are sensitive to. The pressure acts in all directions (it is a scalar quantity). It is generally measured as levels of micro Pascal (μPa). In a free or ideal sound field, especially in the open sea, the Particle Motion can be calculated from the measurement of the Sound Pressure, using wave equations; the plane wave equation or the spherical wave equation. In the far-field, distant from the source, the particle velocity is directly proportional to the sound pressure. Closer to the source the particle velocity is higher for a given sound pressure – the Near Field Effect. Sound is reflected and refracted at boundaries with different media: Close to the water surface, and in shallow water, the particle motion increases as a result of pressure release into the air. Under many aquatic circumstances it can be quite difficult to estimate the particle motion by measuring the sound pressure. The particle motion estimates are often only possible under well-specified mid-water conditions, distant from reflecting boundaries. Such conditions do not prevail in small laboratory aquarium tanks, in very shallow water, or close to the sea surface or seabed. Some aquatic animals are sensitive to the sound pressure, but most fishes and invertebrates are sensitive to the particle motion, which enables them to determine the direction from which the sound is coming, and only relatively few fish species are sensitive to the sound pressure Environmental Impact Assessments often emphasize that sounds, and especially low frequency sounds, do not travel well through shallow water. Although this is the case for sound pressure it may not be the case for particle motion. Particle motion levels in shallow water can be high, especially when sound is being transmitted through the seabed or the ground/water interface. Sound does propagate through the seabed, and the nature of marine substrate vibration has recently been described by Underwater sound sources have been reviewed by Popper The offshore oil and gas facilities may be noisy themselves as they operate, and also sounds and substrate vibration may be generated when the facilities are constructed by drilling, and other activities. Very loud sounds, and high levels of substrate vibration are generated by Pile Driving ( The actual operation of Wind Turbines and Oil and Gas Systems also generates sound and vibration. It has been confirmed that the wind turbines radiate sound mainly at a few dominating frequencies from 30 Hz up to 800 Hz Underwater sounds are very important to fishes and aquatic invertebrates. They especially use sounds to navigate through the water and to detect signals from natural environment sources, and from other animals. Some of the fishes are entirely pelagic, for example the herring (Clupeiformes), while others are benthopelagic, for example the cod and haddock (Gadiformes), while a few species are entirely benthic, including the flatfishes (Pleuronectiformes), and many of the invertebrates. The vision ability of these animals in the water is generally poor and they use the “acoustic scene” to locate natural underwater features including preferred habitats, as well as their prey and predators, and they also use sound to set their orientation during migration. Sound travels further and faster in all directions through water than it does through the air and it allows aquatic animals to detect natural sources, and to communicate well with one another. Underwater sound is highly relevant to many aquatic animals Many marine mammals, fishes and invertebrates make sounds themselves. Amongst the vocal fishes are some of the most abundant and important commercial fish species, including the cod & haddock (Gadidae). Many gadoid fishes make underwater sounds, but the sounds differ between species. Some produce knocking sounds, while others produce grunts. In all cases the sounds are pulsed, with each pulse generated by the contraction of a pair of Drumming Muscles attached to the gas-filled swim bladder ( The sounds produced by haddock, especially during courtship and mating, have been recorded and analyzed in the aquarium and in the sea Fish sounds can vary in structure depending on the mechanism used to produce them, but they are generally composed of low frequencies, with most of their energy lying below 3 kHz. So far, no no high frequency sounds have been recorded from fish, although marine mammals can produce ultrasonic sounds. Many fishes, including the Atlantic cod and haddock make sounds during their spawning behavior. The male haddocks accumulate at particular spawning locations and use sounds to attract the females, and to advertise their occupation of a spawning The sounds are often varied during their spawning. For example, the male haddock makes sounds to attract females, and thousands of males gather together on the seabed making their sounds. The females are attracted and then select a particular male to spawn with, discriminating males with different characteristics through sound detection. The sounds of individual male haddock can readily be distinguished. The male haddock varies its sounds during the spawning behaviour, while the female remains silent during spawning, but can make sounds normally. The different sounds produced by the male are shown in The differences between the sounds of different males on the seabed may enable females to select particular males. The sounds may also allow males to assess the strengths of other competing males. Each individual male may then join a female, and engage in spawning with it, making some specialized sounds at the start of the mating behavior. The male that is chosen then flaunts the female with a new sound, and then mounts the female to spawn but later becomes silent. The male and female embrace one another and release their eggs and sperm into the water to create juvenile haddock. However, human noise-making activities may affect spawning success by masking the haddock calls and driving haddock away from their spawning grounds. Many other important fishes also make sounds in the sea, including: cod, pollack, gurnards, bullheads, gobies, and blennies. However, there have been very few studies of sound producing fishes in the sea. lakes and rivers. Marine mammals, including whales and seals, that often prey upon fishes, also make sounds in the sea; and some invertebrates, including squid, lobsters, sea urchins, and some crabs, also make sounds. It is important for the management of fisheries for species like the haddock to determine where the stocks spawn. Listening with a hydrophone from a relatively quiet travelling ship is an effective non-invasive way of locating spawning fishes and mapping their spawning grounds. The sites where haddock and other fish species spawn and the factors that bring the fish together to spawn at particular locations are often not well known. Haddock spawning in the sea has been located by listening for the sounds this species makes during its reproductive behavior. The characteristics of the sounds made by haddock were first examined in the aquarium Long sequences of repeated knocks were heard in the fjord, similar to the display sounds recorded by male haddock during stereotyped reproductive behavior in the aquarium. Rapidly repeated knocks and humming were also heard, confirming that fish were engaging in courtship. At night the sounds merged into a continuous low frequency rumble, suggesting that many haddock were present, producing sounds simultaneously. Listening for haddock sounds provides a reliable, non-invasive way of locating aggregations of spawning haddock in the sea, allowing closer definition of the spawning areas. Both fishing and exposure of haddock to man-made noise at the critical time of spawning may have severe detrimental effects upon their reproductive success. Fishes and invertebrates can hear very well. They are especially sensitive to the particle motion but some are also sensitive to the sound pressure. Listening to natural sounds in their environment can be critical for their survival and reproduction. Their hearing abilities are usually expressed in terms of hearing thresholds (their auditory thresholds at different frequencies). Conditioning experiments involve training the animals to respond every time a sound is presented. Once a response has been established the sound level can then be progressively lowered until the animal no longer responds, enabling the auditory threshold to be determined. The threshold is the sound level at a particular frequency, that is audible to an animal under quiet background conditions. Plotted as a function of frequency it provides the Audiogram. Electrophysiological methods register auditory evoked potentials (AEP) or auditory brainstem responses (ABR) by monitoring hair cell or brain responses. Most of the hearing thresholds are generally determined using pure tone sounds, at a number of frequencies. Only a small number of fishes and invertebrates have had their audiograms measured. Many of the audiograms are determined while measuring the sound pressure. However, it has been shown that the cod detects particle motion at frequencies below 100 Hz, and only at higher frequencies detects the sound pressure Most hearing studies have been carried out in small aquariums in the laboratory, where the sound fields are highly complex as a result of the presence of pressure-release surfaces, and where it is almost impossible to set up and calibrate a reliable acoustic field with evident levels of particle motion. The particle motion components of the sound field are therefore, often completely ignored. Furthermore, background noise is often high over a wide range but especially at the lower frequencies and may mask the playback of sounds The presence of adverse underwater sounds (often termed “noise”), and also substrate vibration, generated by human activities (anthropogenic sources) can be quite harmful to fishes and aquatic invertebrates, as the detection of sounds of interest to the animals can be adversely influenced by the presence of noises, whether the noises are natural sounds or sounds from human sources. The abilities of fishes and invertebrates to use sound to navigate, detect predators and prey, select habitat types, and communicate with one another, may be strongly affected by exposure to other sounds (noise). The noise may cause physical damage to the body tissues; damage to the auditory tissues, including the sensory hair cells; and changes to important behavior patterns, adversely affecting feeding migrations, and spawning. Masking of biologically important sounds, including those from the same species, may also be detrimental, the unwanted sound (the masker) decreases the ability to detect important natural sounds. Many major developments are now taking place off our coasts, including: harbor re-developments; offshore oil and gas systems; offshore wind farms, fixed and floating tidal energy generators; and wave energy generators. Noise levels in the sea, lakes and rivers have been changing dramatically as a result of human activities, and may have adverse effects upon aquatic animals. The sea, lakes and rivers are relatively dark, low-visibility environments, where sound is especially important to the aquatic animals. The effects of sound on the aquatic animals vary with distance from the source. However, modelling of particle motion levels at different distances from the source is rarely carried out in Impact Assessments. Models have recently been developed for dealing with ground roll generated by seismic surveys, but such models also need to be applied to pile driving and other sources of substrate vibration. Normally, assessments and modelling are only done in terms of sound pressure. Often: no mention is made of particle motion; no account is taken of substrate or interface waves; and sensitivity to Infrasound is often ignored. Infrasound consists of sound waves with a frequency below the lower limit of human audibility (generally 20 Hz). Hearing becomes gradually less sensitive as frequency decreases, so for humans and animals to perceive infrasound, the sound level must be sufficiently high. It is evident that there are very substantial gaps in our knowledge about the effects of sound on all aquatic animals, and also a very substantial need for better understanding of the sounds produced by various sources and how they may affect aquatic animals. Great efforts are being directed at examining the effects of underwater noise upon marine mammals, but much less attention is being paid to effects upon fishes and invertebrates. Marine mammals make up perhaps 100 species, but there are over 32,000 species of fishes and a great number of marine invertebrates. It is important to establish Sound Exposure Criteria for fishes & invertebrates. However, environmental impact assessments of offshore activities often involve dubious assumptions. Sound exposure criteria are often assumed rather than based on real data. The metrics employed are often inappropriate, especially for fish and invertebrates, which are primarily sensitive to particle motion, but the effects of the particle motion are often ignored. Sound propagation models have seldom been validated and the sound pressure measurements do not always predict particle motion levels. They are especially poor for shallow water conditions or where sound travels through the substrate. Sound pressure measurements only tend to work well or estimating the particle motion in midwater in the sea Any interference with the acoustic scene can have a negative impact upon aquatic animals. It is important to examine the hearing abilities of aquatic animals. Much work has been done on the hearing of fishes, especially those living in the sea. There are substantial differences in hearing sensitivity and frequency range between different fish species It is necessary to determine the levels of sound that may harm animals, in terms of Particle Motion as well as Sound Pressure, for fishes and invertebrates, in order to develop criteria for the harm caused by sound exposure. Sound Exposure Criteria set limits to the received levels for particular sources, based on the levels above which damage or adverse effects may occur. The setting of such criteria was established initially for marine mammals Based on currently available research, it is important to provide a firm scientific, technical basis on which to improve the current understanding of the sound levels that are associated with the very earliest onset of physical injury to fishes, especially from the exposure to impulsive underwater sound. There is a need to provide a firm scientific, technical basis on which to improve the identification of the effects upon fishes from exposure to impulsive underwater sound. In setting the Sound Exposure Criteria, it is important to determine those sound pressure and particle motion levels that affect fishes and invertebrates adversely. At the highest sound level an animal may be killed or seriously injured by the forces associated with passage of the acoustic wave through its body. Assessments of killing or injury, damage to the body tissues, including damage to the auditory system, or physiological damage, are generally done using sound pressure only, and there is a need for experiments where fish and invertebrates are shaken by particle motion. rather than squeezed by sound pressure. Behavioural responses must ideally be examined using free-living fish and invertebrates in the sea rather than in aquarium tanks. Extensive reviews of Sound Exposure Criteria Guidelines have been cited in Where there are problems from human sounds upon animals is especially important to deal with the effects of noise – termed Mitigation. The intention of mitigation is to avoid sound exposure or to reduce it to levels that are harmless to the animals that might be exposed. One solution is simply to remove human noise sources from aquatic areas, including the sea, rivers, lakes and estuaries where they are likely to be damaging to aquatic animals. Another approach is to reduce the levels of sound that are being generated. Once they have been implemented, mitigation measures need to be assessed to ensure they have been effective. Ecological and environmental impact assessments or surveillance monitoring could generate basic understanding and provide important benefits to future developments and regulatory actions with respect to noise mitigation.