Abstract
Testing people for COVID-19 in a country like India with a huge population is a near impossible task therefore the government is using body temperature as a testing parameter to cover the whole population. Infrared thermometers are used to find the temperature because it is a cheaper and faster way. This testing rate can be done even faster, without the need of manpower and with far more accuracy using smart watches and bands. These wrist-wearables are mostly used for fitness purposes which have more measuring equipment that is used for preliminary testing done for COVID. This equipment s are in the form of electric sensors which are small enough to be used in wearables. So we can get even more insight and accuracy compared to the standard method. In this study an application is created to use an array of sensors (Pulse sensor, Pulse oximeter, Accelerometer and temperature sensor) are being used in these wearables to find the chance, that a person is affected due to COVID-19 and the information can be seen real time in mobile phone through the application. All the information can be sent to the health organization s if required.
Author Contributions
Copyright© 2020
Kanishkar K., et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
“COVID 19” started its roots from Wuhan, China which has changed the world upside down. It has held people captive inside their own houses. All the schools, colleges and companies were closed which eventually triggered a deep economic crisis. Government has announced lockdown to control the pandemic spread According to India’s survey We had always learned new ways to fight and manage such unexpected diseases. Technology cannot prevent the onset of the pandemics; however, it can help prevent the spread, educate, warn, and Empower those on the ground to be aware of the situation, and noticeably lessen the impact. Today, with converging technologies like mobile, cloud, analytics, robotics, AI/ML, 4G/5G, and high-speed internet, has created several innovative approaches for pandemic response. Governments, Venture Capitalists, Academic Institutions, Incubators, Startups, large-scale business enterprises and small-scale business enterprises are all doing their part to deploy new innovative solutions as quickly as possible. Developments like the 5-minute COVID19 test kit are helping to increase the number of tests taken in a day On the other side, almost everyone in the world is using watches, which have been replaced by their smart versions that can come in handy in this situation. According to International Data Corporation (IDC) 5.03 million Smart band and 930 thousand smart watches were shipped to India in 2019 In this study, an application is created especially for the wrist-wearables to measure the chance of a person being affected due to COVID-19. Values from temperature, heart rate and accelerometer/gyroscope sensor can be analyzed and displayed in mobile phones in real time. If the person is suspected then the information can be sent to government health organization. This application can also be coupled with existing researches like cough detection
Materials And Methods
The main materials we use in this study are wrist-wearable devices. The common symptoms for COVID-19 are fever, dry cough and tiredness Temperature sensors are mainly used to measure the body temperature through skin; even though skin temperature differs from body temperature they are correlated. Always skin temperature is a few degrees lesser than that of the body temperature. Temperature sensors used in the wearable are thermistor based sensors. A thermistor is a resistance thermometer, or a resistor whose resistance is dependent on temperature. The change in temperature of a person can be used to find whether he/she is suffering from fever. Its accuracy can be increased if it is coupled with heart rate value. Also from recent research it has been found that skin temperature is negatively correlated with stress. Heart rate (HR) or pulse is the frequency of cardiac cycles, and is expressed as beats per minute (bpm).HR values for ordinary people is around 60 to 80 beats per minute. The most popular technique for HR measurement is Photoplethysmography (PPG). PPG is the process of using light to measure the blood flow. Wearables with optical heart-rate monitors have small LEDs on their undersides that emits green light into the skin on your wrist. The different wavelengths of light from these optical emitters interact differently with the blood flowing through your wrist. When that light refracts or reflects off your flowing blood, another sensor in the wearable captures that information. That data can then be processed with algorithms to produce understandable pulse readings. This pulse reading along with values from other sensors can be used to come up with certain predictions. As said before it can be used to find fever since there will be an increase in heart rate or pulse reading with minimum value from the accelerometer. By continuous reading of this value we can find patterns and abnormalities of the respective individual. Pulse Oximeter, often called SpO2 It is usually calculated in percentage. A patient affected by COVID-19 has very low blood oxygen levels, whereas for a non-affected person the value oxygen level in blood is 95%. An accelerometer usually coupled with a gyroscope is the most commonly used sensor for measuring the motion of the human body. It measures acceleration in one or more axis. Three axis accelerometer which measures vibration in three perpendicular axes is the most commonly used type in fitness bands It measures acceleration by measuring the change in capacitance. The mass is attached to springs that allow it to move along one direction. When the band is subject to acceleration due to motion or gravity, the moving plates change their position between the fixed plates (they together act as a capacitor) and therefore the capacitance between them changes. The change in capacitance between the plates is measured and used to estimate the acceleration. This is the working of single axis accelerometer which is similar to three axes meter where the mass can move in all direction and plates are fixed in all three dimensions. By measuring the amount of acceleration due to gravity, an accelerometer can figure out the angle it is tilted at with respect to the earth. By sensing the amount of dynamic acceleration, the accelerometer can find out how fast and in what direction the device is moving. As said before using the accelerometer value the movement and activity of the person can be measured and it can be used indirectly to measure the sleep cycle, tiredness and heart rate at rest, etc., when combined with other sensors. The systems predicting sleep cycle, abnormal heart rate or pulse rate, low blood oxygen level, fall detection are all already implemented in the wrist-wearable devices Wrist-wearables are designed to continuously check the health of the person wearing it. The systems which predict sleep cycle, abnormal heart rate or pulse rate, low blood oxygen level, fall detection are already implemented in wrist wearables. In this application we are using the outputs from these pre built systems as shown in the diagram. These systems are combinations of above mentioned sensors and algorithms to combine the outputs to predict any abnormality in heath. Abnormalities in health are found by comparing current data with previous day s data. Whenever there is an abnormality the corresponding system returns a true value. To find the patient the outputs are compared with symptoms of COVID. Here drop in blood oxygen level is an important one. Therefore the output from pulse oximeters plays a major part in increasing the accuracy. But we can also predict COVID with other sensors too. According to this application, if the outputs from any two systems show true, then there is 50 % chance of COVID. And if the output from more than two systems is true, then the chance is 75%, so he or she should definitely take a COVID-19 test. Therefore the information can be sent to government health organization. 100 % accuracy cannot even be achieved in medical COVID-19 test This application is tested with hardware similar to wrist wearables.